Катеты прямоугольного треугольника равны 9 см и 12 см. Определи длину медианы этого треугольника.

7 Дек 2019 в 19:40
168 +1
1
Ответы
1

Медиана прямоугольного треугольника равна половине гипотенузы и проходит через вершину прямого угла. Длина гипотенузы находится по формуле Пифагора: (c = \sqrt{a^2 + b^2}), где (a = 9) см и (b = 12) см.

Таким образом, (c = \sqrt{9^2 + 12^2} = \sqrt{81 + 144} = \sqrt{225} = 15) см.

Длина медианы равна половине длины гипотенузы, то есть (m = \frac{15}{2} = 7.5) см.

Ответ: длина медианы этого треугольника равна 7.5 см.

18 Апр 2024 в 23:57
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир