Човен пливе через річку шириною s=500 м зі швидкістю відносно води v=5,2 м/с тримаючи курс під кутом a=30° до берега. Унаслідок зносу човна течією він припливає з точки А до точки С, яка знаходиться на відстані L=100м від точки В. Якою є швидкість u течії річки?
Швидкість човна в напрямку руху річки складається із двох складових: складової, яка зумовлена рухом човна відносно води, тобто v=5,2 м/с, і складової, яка зумовлена рухом води течією річки.
Щоб знайти швидкість течії річки u, зобразимо вектор швидкості човна щодо берега та вектор швидкості човна відносно води:
Позначимо вектор швидкості човна щодо берега як Vc, а вектор швидкості човна відносно води як Vw. Тоді Vc = v, Vw = v.
Розкладемо Vw на дві складові: одна паралельна течії річки зі швидкістю u, інша перпендикулярна до річки.
За умовою, вектор Vc повинен утворювати кут a=30° з вектором Vw, оскільки курс човна тримається під кутом a до берега. Таким чином, можемо скласти рівняння:
Vc = Vw + u
де Vc = v, Vw = v, a = 30°.
Розкладаємо вектори Vw і u на складові:
Vw = (vcos30°, vsin30°) u = (u, 0)
Підставимо ці розкладені вектори у рівняння:
(v, 0) = (vcos30° + u, vsin30°)
Розв'яжемо це рівняння і знайдемо значення швидкості tечії річки u:
v = vcos30° + u 0 = vsin30°
Отже, виходить: u = v - vcos30° = 5,2 - 5,2cos30° ≈ 4,5 м/с
Отже, швидкість течії річки u дорівнює близько 4,5 м/с.
Швидкість човна в напрямку руху річки складається із двох складових: складової, яка зумовлена рухом човна відносно води, тобто v=5,2 м/с, і складової, яка зумовлена рухом води течією річки.
Щоб знайти швидкість течії річки u, зобразимо вектор швидкості човна щодо берега та вектор швидкості човна відносно води:
Позначимо вектор швидкості човна щодо берега як Vc, а вектор швидкості човна відносно води як Vw. Тоді Vc = v, Vw = v.
Розкладемо Vw на дві складові: одна паралельна течії річки зі швидкістю u, інша перпендикулярна до річки.
За умовою, вектор Vc повинен утворювати кут a=30° з вектором Vw, оскільки курс човна тримається під кутом a до берега. Таким чином, можемо скласти рівняння:
Vc = Vw + u
де Vc = v, Vw = v, a = 30°.
Розкладаємо вектори Vw і u на складові:Vw = (vcos30°, vsin30°)
Підставимо ці розкладені вектори у рівняння:u = (u, 0)
(v, 0) = (vcos30° + u, vsin30°)
Розв'яжемо це рівняння і знайдемо значення швидкості tечії річки u:v = vcos30° + u
0 = vsin30°
Отже, виходить:
u = v - vcos30° = 5,2 - 5,2cos30° ≈ 4,5 м/с
Отже, швидкість течії річки u дорівнює близько 4,5 м/с.