Два тела летящие навстречу друг другу со скоростями 2 и 5 м\с,после абослютно неупругово удара стали двигаться как одно целое со скоростью 2,5 м\с,причем второе тело не поменяло направление движение.отношение масс этих тел равно
Let the masses of the two bodies be (m_1) and (m_2). Before the collision, the relative speed of the bodies is (2+5=7 \, m/s). After the collision, the two bodies are moving at a speed of (2.5 \, m/s).
Using the Law of Conservation of Momentum, we can write: [ m_1 \times 2 - m_2 \times 5 = (m_1+m_2) \times 2.5 ] [ 2m_1 - 5m_2 = 2.5(m_1 + m_2) ] [ 2m_1 - 5m_2 = 2.5m_1 + 2.5m_2 ] [ 0.5m_1 = 7.5m_2 ] [ m_1 = 15m_2 ]
So, the ratio of the masses of the two bodies is (15:1).
Let the masses of the two bodies be (m_1) and (m_2).
Before the collision, the relative speed of the bodies is (2+5=7 \, m/s).
After the collision, the two bodies are moving at a speed of (2.5 \, m/s).
Using the Law of Conservation of Momentum, we can write:
[
m_1 \times 2 - m_2 \times 5 = (m_1+m_2) \times 2.5
]
[
2m_1 - 5m_2 = 2.5(m_1 + m_2)
]
[
2m_1 - 5m_2 = 2.5m_1 + 2.5m_2
]
[
0.5m_1 = 7.5m_2
]
[
m_1 = 15m_2
]
So, the ratio of the masses of the two bodies is (15:1).