Пусть VVV - объем воды в кастрюле, T1T_1T1 - температура закипания воды, T2T_2T2 - температура воды в начале нагрева, t1t_1t1 - время, за которое выкипает треть воды, t2t_2t2 - время, за которое вода нагреется до закипания.
Из условия задачи имеем:
При закипании вода выкипает треть объема: V/3=VвыкипелоV/3 = V_{выкипело}V/3=Vвыкипело
Энергия, необходимая для выкипания трети воды: Qвыкипело=c⋅m⋅ΔT=L⋅mQ_{выкипело} = c \cdot m \cdot \Delta T = L \cdot mQвыкипело=c⋅m⋅ΔT=L⋅m, где ccc - удельная теплоемкость воды, mmm - масса выкипевшей трети воды, ΔT=T1−T2\Delta T = T_1-T_2ΔT=T1−T2 - разность температур, LLL - теплота парообразования.
Энергия, необходимая для нагрева оставшейся части воды до закипания: Qнагрели=c⋅m′⋅ΔTQ_{нагрели} = c \cdot m' \cdot \Delta TQнагрели=c⋅m′⋅ΔT, где m′m'm′ - масса воды после выкипания трети.
Так как теплопотери и теплоемкость кастрюли не учитываются, то Q<em>выкипело=Q</em>нагрелиQ<em>{выкипело} = Q</em>{нагрели}Q<em>выкипело=Q</em>нагрели, откуда получаем:
c⋅V/3⋅ΔT=c⋅2V/3⋅ΔT=L⋅V/3c \cdot V/3 \cdot \Delta T = c \cdot 2V/3 \cdot \Delta T = L \cdot V/3c⋅V/3⋅ΔT=c⋅2V/3⋅ΔT=L⋅V/3
L=2c⋅ΔTL = 2c \cdot \Delta TL=2c⋅ΔT
Теперь можем решить задачу. Так как при нагреве до закипания вoda теплоемкостю можно пренебречь, то ccc = 1 кДж/кг*С.
Теплота парообразования воды L=2260кДж/кгL = 2260 кДж/кгL=2260кДж/кг.
Температура закипания воды T1=100C∘T_1 = 100 C^{\circ}T1=100C∘, температура начала нагрева T2=0C∘T_2 = 0 C^{\circ}T2=0C∘.
Подставляем в уравнение значение LLL: 2⋅1⋅ΔT=22602 \cdot 1 \cdot \Delta T = 22602⋅1⋅ΔT=2260, откуда ΔT=1130C∘\Delta T = 1130 C^{\circ}ΔT=1130C∘
Таким образом, для нагрева воды до закипания потребуется время t2t_2t2, за которое температура воды увеличится на ΔT=1130C∘\Delta T = 1130 C^{\circ}ΔT=1130C∘, время n2 можно найти, используя формулу:
ΔT=c⋅m⋅t\Delta T = c \cdot m \cdot tΔT=c⋅m⋅tt=ΔTc⋅mt = \frac{\Delta T}{c \cdot m}t=c⋅mΔT
Подставляем известные значения: t2=11301⋅1000t_2 = \frac{1130}{1 \cdot 1000}t2=1⋅10001130 = 1,13 минут
Таким образом, для того чтобы нагреть воду до закипания при температуре 0 градусов потребуется 1 минута и 13 секунд.
Пусть VVV - объем воды в кастрюле, T1T_1T1 - температура закипания воды, T2T_2T2 - температура воды в начале нагрева, t1t_1t1 - время, за которое выкипает треть воды, t2t_2t2 - время, за которое вода нагреется до закипания.
Из условия задачи имеем:
При закипании вода выкипает треть объема: V/3=VвыкипелоV/3 = V_{выкипело}V/3=Vвыкипело
Энергия, необходимая для выкипания трети воды: Qвыкипело=c⋅m⋅ΔT=L⋅mQ_{выкипело} = c \cdot m \cdot \Delta T = L \cdot mQвыкипело =c⋅m⋅ΔT=L⋅m, где ccc - удельная теплоемкость воды, mmm - масса выкипевшей трети воды, ΔT=T1−T2\Delta T = T_1-T_2ΔT=T1 −T2 - разность температур, LLL - теплота парообразования.
Энергия, необходимая для нагрева оставшейся части воды до закипания: Qнагрели=c⋅m′⋅ΔTQ_{нагрели} = c \cdot m' \cdot \Delta TQнагрели =c⋅m′⋅ΔT, где m′m'm′ - масса воды после выкипания трети.
Так как теплопотери и теплоемкость кастрюли не учитываются, то Q<em>выкипело=Q</em>нагрелиQ<em>{выкипело} = Q</em>{нагрели}Q<em>выкипело=Q</em>нагрели, откуда получаем:
c⋅V/3⋅ΔT=c⋅2V/3⋅ΔT=L⋅V/3c \cdot V/3 \cdot \Delta T = c \cdot 2V/3 \cdot \Delta T = L \cdot V/3c⋅V/3⋅ΔT=c⋅2V/3⋅ΔT=L⋅V/3
L=2c⋅ΔTL = 2c \cdot \Delta TL=2c⋅ΔT
Теперь можем решить задачу. Так как при нагреве до закипания вoda теплоемкостю можно пренебречь, то ccc = 1 кДж/кг*С.
Теплота парообразования воды L=2260кДж/кгL = 2260 кДж/кгL=2260кДж/кг.
Температура закипания воды T1=100C∘T_1 = 100 C^{\circ}T1 =100C∘, температура начала нагрева T2=0C∘T_2 = 0 C^{\circ}T2 =0C∘.
Подставляем в уравнение значение LLL:
2⋅1⋅ΔT=22602 \cdot 1 \cdot \Delta T = 22602⋅1⋅ΔT=2260, откуда ΔT=1130C∘\Delta T = 1130 C^{\circ}ΔT=1130C∘
Таким образом, для нагрева воды до закипания потребуется время t2t_2t2 , за которое температура воды увеличится на ΔT=1130C∘\Delta T = 1130 C^{\circ}ΔT=1130C∘, время n2 можно найти, используя формулу:
ΔT=c⋅m⋅t\Delta T = c \cdot m \cdot tΔT=c⋅m⋅t t=ΔTc⋅mt = \frac{\Delta T}{c \cdot m}t=c⋅mΔT
Подставляем известные значения:
t2=11301⋅1000t_2 = \frac{1130}{1 \cdot 1000}t2 =1⋅10001130 = 1,13 минут
Таким образом, для того чтобы нагреть воду до закипания при температуре 0 градусов потребуется 1 минута и 13 секунд.