Модуль скорости крайних точек равномерно вращающейся шлифовального круга диаметр которого d, равен V. Найдите частоту вращения круга и модуль центростремительного ускорения крайних точек круга.

14 Ноя 2019 в 19:49
540 +1
0
Ответы
1

Для начала найдем частоту вращения круга. Скорость крайней точки круга выражается через угловую скорость и радиус круга:

V = ω * R,

где V - скорость крайних точек круга,
ω - угловая скорость вращения,
R - радиус круга.

Так как у нас равномерное вращение, то угловая скорость постоянна и равна:

ω = 2π * f,

где f - частота вращения,
π - число пи.

Таким образом, частота вращения круга будет:

f = ω / (2π) = V / (2π * R).

Теперь найдем модуль центростремительного ускорения крайних точек круга. Центростремительное ускорение выражается как:

a = ω^2 * R.

Подставляем значение угловой скорости:

a = (2π f)^2 R = 4π^2 f^2 R.

Используя найденное значение частоты вращения, найдем модуль центростремительного ускорения:

a = 4π^2 (V / (2π R))^2 R = 4π^2 V^2 / (4π^2 * R) = V^2 / R.

Итак, мы нашли частоту вращения круга и модуль центростремительного ускорения крайних точек круга:

f = V / (2π * R),

a = V^2 / R.

19 Апр 2024 в 01:59
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир