2. Диагональ осевого сечения цилиндра составляет с плоскостью основания цилиндра угол 600. Найдите объем цилиндра, если площадь осевого сечения равна 16 см3.
а) 16п см3 ; б)16 см3; в)32п см3 г)8п см3; д)16п см3.
3. Площадь осевого сечения цилиндра равна 21см3, площадь основания - 18п см2 Найдите объем цилиндра.
А)9п см3; б)31,5 см3, в)21п см3, г)63п см3, д)31,5п см3.
4. Найдите объем конуса , осевое сечение которого представляет собой равнобедренный прямоугольный треугольник с гипотенузой, равной 6 см.
а) 18п см3, б)18п см3, в)6п см3, г)54п см3, д)6п см3.
5.Найдите объем конуса , полученного в результате вращения вокруг большего катета прямоугольного треугольника с гипотенузой, равной 2 см, и углом 300.
А)18п см3, б)18п см3, в)6п см3, г)2п см3, д)6п см3.

16 Мая 2020 в 19:43
286 +2
0
Ответы
1
Для нахождения объема цилиндра, зная площадь осевого сечения, мы можем воспользоваться формулой V = S*h, где S - площадь осевого сечения, h - высота цилиндра.

Учитывая, что диагональ осевого сечения составляет угол 60 градусов с плоскостью основания цилиндра, можно представить сечение как равносторонний треугольник. Так как площадь равностороннего треугольника равна (a^2 * √3)/4, где a - длина стороны, то получим:

(a^2 √3)/4 = 16
a^2 = 16 4 / √3
a^2 = 64 / √3
a = 8√3

Длина радиуса цилиндра (a) равна половине стороны равностороннего треугольника. Тогда радиус равен 4√3, а высота цилиндра равна 4√3 * √3 = 12.

Объем цилиндра: V = πr^2h = 16π см³

Ответ: а) 16π см³

Площадь осевого сечения цилиндра равна 21 см³, а площадь основания - 18π см². Обозначим радиус основания цилиндра как r и высоту цилиндра как h.

Имеем уравнения:
πr^2 = 21
πr^2 = 18π

Отсюда находим, что r^2 = 21, следовательно r = √21. Тогда h = (18π)/(π*r^2) = (18π)/(21) = 18/21 = 6/7.

Объем цилиндра: V = πr^2h = 21π см³

Ответ: в) 21π см³

Если диагональ осевого сечения конуса - это гипотенуза равнобедренного прямоугольного треугольника, а высота этого треугольника равна 6 см, то радиус основания конуса будет равен половине гипотенузы, т.е. 3 см.

Объем конуса: V = (1/3) π r^2 h = (1/3) π 3^2 6 = 54π см³

Ответ: г) 54π см³

Для нахождения объема конуса необходимо знать площадь основания и высоту конуса. Площадь основания равна половине произведения катета на гипотенузу прямоугольного треугольника, т.е. (1/2) 2 6 = 6 см².

Учитывая, что угол 30 градусов соответствует одному из углов прямоугольного треугольника, где катет равен 2 см, а гипотенуза равна 6 см, можно найти второй катет по теореме Пифагора: катет = √(6^2 - 2^2) = √32.

Высота конуса равна второму катету прямоугольного треугольника, т.е. h = √32.

Теперь можем найти объем конуса: V = (1/3) π r^2 h = (1/3) π 6 √32 = 6π√32 = 6π * 4 = 24π см³

Ответ: а) 24π см³

18 Апр 2024 в 12:06
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир