Основание равнобедренного треугольника равно 32 см, а боковая сторона 30 см. Найдите площадь треугольника

16 Июн 2020 в 19:43
135 +1
1
Ответы
1

Первым шагом найдем высоту треугольника, проведенную из вершины основания к середине противоположной стороны.

Полуоснование треугольника равно 16 см (половина основания). Разделим боковую сторону треугольника пополам, так как треугольник равнобедренный, и получим два прямоугольных треугольника.

Применим теорему Пифагора, где катеты равны 16 см и h (высоте), а гипотенуза равна 30 см:
h = √(30^2 - 16^2)
h = √(900 - 256)
h = √644
h ≈ 25,37 см

Теперь найдем площадь треугольника, умножив полуоснование на высоту и разделив на 2:
S = (32 * 25,37) / 2
S ≈ 406,72 см²

Ответ: площадь равнобедренного треугольника равна примерно 406,72 квадратных сантиметра.

18 Апр 2024 в 11:01
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир