С точки Р к плоскости В проведено наклонную, которая образует с плоскостью угол 30 °, Найдите длину наклонной и расстояние от точки Р к плоскости В, если проекция наклонной на плоскость равна 6 см.

16 Авг 2020 в 19:43
136 +1
1
Ответы
1

Пусть длина наклонной равна h, а расстояние от точки P до плоскости В равно d.

Так как угол между наклонной и плоскостью равен 30°, то получаем, что sin(30°) = d/h.

Также известно, что проекция наклонной на плоскость равна 6 см, поэтому можно написать уравнение cos(30°) = 6/h.

Исходя из этих уравнений, мы можем найти длину наклонной и расстояние от точки P до плоскости В:

cos(30°) = 6/h
√3/2 = 6/h
h = 6 * 2 / √3
h = 12√3 / 3
h = 4√3

sin(30°) = d/h
1/2 = d / 4√3
d = 4√3 / 2
d = 2√3

Таким образом, длина наклонной равна 4√3 см, а расстояние от точки P до плоскости В равно 2√3 см.

18 Апр 2024 в 10:39
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир