Найдите площадь треугольника АВС, если АВ=16см, ВL – медиана и BL=17, SinABL =15/17

6 Мая 2019 в 19:52
288 +1
0
Ответы
1

Дано:

AB = 16 см,
BL = 17 см,
sin(ABL) = 15/17.

Для решения этой задачи мы можем использовать формулу для нахождения площади треугольника через стороны и угол между ними:

S = 1/2 a b * sin(C),

где a и b - стороны треугольника, C - угол между этими сторонами.

Из условия задачи видно, что мы знаем стороны AB и BL, а также угол ABL. Чтобы найти площадь треугольника, нужно умножить половину произведения сторон на sin угла между ними.

Найдем сторону AL с помощью теоремы Пифагора для треугольника ABL:
AL^2 = AB^2 - BL^2,
AL^2 = 16^2 - 17^2,
AL^2 = 256 - 289,
AL^2 = -33.

Так как нельзя извлечь квадратный корень из отрицательного числа, это означает, что что-то не так с исходными данными, потому что длина стороны не может быть отрицательной. Вероятно, была допущена ошибка в условии задачи, если AL было бы известно, мы могли бы продолжить вычисления, но с текущими данными невозможно найти площадь треугольника.

28 Мая 2024 в 16:46
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир