Ребро куба авсда1в1с1д1 равно а.найдите расстояние между прямыми сс1и вд1

29 Авг 2021 в 19:46
107 +1
0
Ответы
1

Для нахождения расстояния между прямыми нужно найти расстояние между параллельными плоскостями, на которых лежат данные прямые.

Уравнение плоскости, содержащей прямую СС1:

расстояние между точкой С(1, 1, 0) и плоскостью равно 0,уравнение плоскости проходящей через С, С1 и Д1:
x + y = 2,уравнение плоскости, содержащей прямую ВД1:
z = 1.

Теперь можно использовать формулу расстояния между двумя параллельными плоскостями:

|ax0 + by0 + cz0 + d| / sqrt(a^2 + b^2 + c^2) = |11 + 11 + 0*1 + 0| / sqrt(1^2 + 1^2 + 0^2) = 1 / sqrt(2) = sqrt(2) / 2.

Ответ: Расстояние между прямыми СС1 и ВД1 составляет sqrt(2) / 2.

17 Апр 2024 в 13:06
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир