Найдите площадь полной поверхности и объём правильной шестиугольной пирамиды.если сторона основания которой равна и 4см.её высота-2 см.а апофема 4 см

23 Окт 2021 в 19:40
78 +1
1
Ответы
1

Для начала найдем площадь полной поверхности пирамиды.

Площадь боковой поверхности правильной пирамиды равна 1/2 * периметр основания * апофема.
Периметр правильного шестиугольника равен 6 * сторона = 6 * 4 = 24 см.

Площадь боковой поверхности пирамиды: 1/2 * 24 см * 4 см = 48 см².

Площадь основания пирамиды равна 6 * (сторона основания)² = 6 * 4² = 6 * 16 = 96 см².

Итак, площадь полной поверхности пирамиды: 48 см² + 96 см² = 144 см².

Теперь найдем объем пирамиды.
Объем правильной пирамиды равен 1/3 * (площадь основания) * высота.

Объем пирамиды: 1/3 * 96 см² * 2 см = 64 см³.

Итак, площадь полной поверхности этой правильной шестиугольной пирамиды равна 144 см², а её объём равен 64 см³.

17 Апр 2024 в 09:35
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир