Боковые стороны трапеции 5 см и 9 см,а средняя линия равна 12. Найдите периметр и площадь трапеции, если угол C=150

9 Сен 2019 в 21:41
276 +1
0
Ответы
1

Для начала найдем боковые стороны трапеции, которые соответствуют углу C:
AB = CD = 5 см
BC = DA = 9 см

Затем найдем длину высоты трапеции между основаниями AB и CD, используя теорему косинусов:
cos(30°) = h / 5
h = 5 cos(30°) = 5 √3 / 2 = 5√3 / 2

Теперь можем найти площадь трапеции:
S = (AB + CD) h / 2 = (5 + 5) 5√3 / 2 = 5√3 * 5 = 25√3 см^2

Теперь найдем периметр трапеции:
P = AB + BC + CD + DA = 5 + 9 + 5 + 9 = 28 см

Итак, периметр трапеции равен 28 см, а площадь равна 25√3 см^2.

20 Апр 2024 в 02:07
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир