1.найдите радиус окружности, описанной около прямоугольника, две стороны которого равны 27 и корень из 295 2.Найдите диагональ прямоугольника вписанного в окружность радиус которой равен 2 корень из 2. 3.Найдите радиус окружности описанной около прямоугольника две стороны которого равны 11 и корень из 135

14 Ноя 2019 в 19:48
306 +1
0
Ответы
1
Для нахождения радиуса описанной окружности вокруг прямоугольника с двумя сторонами 27 и корнем из 295, нам нужно воспользоваться формулой:

Радиус описанной окружности = половина диагонали прямоугольника

Диагональ прямоугольника вычисляется по формуле:
d = √(a^2 + b^2), где a и b - стороны прямоугольника

В данном случае:
d = √(27^2 + (√295)^2)
d = √(729 + 295)
d = √1024
d = 32

Теперь найдем радиус описанной окружности:
Радиус = d/2
Радиус = 32/2
Радиус = 16

Ответ: Радиус описанной окружности равен 16.

Для нахождения диагонали вписанного в окружность прямоугольника с радиусом окружности, равным 2√2, нам нужно воспользоваться тем, что диагональ прямоугольника равна двум радиусам окружности.

Дано:
Радиус окружности r = 2√2

Тогда диагональ прямоугольника:
d = 2 r
d = 2 2√2
d = 4√2

Ответ: Диагональ прямоугольника вписанного в окружность радиусом 2√2 равна 4√2.

Для нахождения радиуса описанной окружности вокруг прямоугольника с двумя сторонами 11 и корнем из 135, мы также воспользуемся формулой для нахождения диагонали прямоугольника:

d = √(a^2 + b^2)

В данном случае:
d = √(11^2 + (√135)^2)
d = √(121 + 135)
d = √256
d = 16

Теперь найдем радиус описанной окружности:
Радиус = d/2
Радиус = 16/2
Радиус = 8

Ответ: Радиус описанной окружности равен 8.

19 Апр 2024 в 01:59
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир