Given that sin a = 1/2, we can find the value of cos a and tan a using the Pythagorean identity sin^2(a) + cos^2(a) = 1.
Given sin a = 1/2, we can determine that cos a = sqrt(1 - sin^2(a)) = sqrt(1 - (1/2)^2) = sqrt(1 - 1/4) = sqrt(3/4) = sqrt(3)/2.
Therefore, cos a = sqrt(3)/2.
To find tan a, we can use the trigonometric identity tan a = sin a / cos a.
tan a = (1/2) / (sqrt(3)/2) = 1/sqrt(3) = sqrt(3)/3.
Therefore, cos a = sqrt(3)/2 and tan a = sqrt(3)/3.
Given that sin a = 1/2, we can find the value of cos a and tan a using the Pythagorean identity sin^2(a) + cos^2(a) = 1.
Given sin a = 1/2, we can determine that cos a = sqrt(1 - sin^2(a)) = sqrt(1 - (1/2)^2) = sqrt(1 - 1/4) = sqrt(3/4) = sqrt(3)/2.
Therefore, cos a = sqrt(3)/2.
To find tan a, we can use the trigonometric identity tan a = sin a / cos a.
tan a = (1/2) / (sqrt(3)/2) = 1/sqrt(3) = sqrt(3)/3.
Therefore, cos a = sqrt(3)/2 and tan a = sqrt(3)/3.