Основание прямой призмы АВСА1В1С1 прямоугольный треугольник АВС, у которогоугол САВ=90 градусов СА 5 м. Площадь боковой грани ВВ1А1А призмы равна 16 метров квадратных а градусная мера двухгранного угла А1ВСА=45 градусов. найти обьем пирамиды А1АВС

13 Фев 2020 в 19:43
97 +1
0
Ответы
1

Для начала найдем высоту h пирамиды А1АВС.

Так как угол А1ВСА = 45 градусов, то дополнительный угол В1А1С = 180 - 45 = 135 градусов.
Так как у основания прямоугольный треугольник АВC, то угол A = 90 градусов.
Таким образом, у треугольника A1BV1 также равен 135 градусов.

Отсюда следует, что треугольники A1ВV1 и AC равны, значит, B1V1 = C.

Так как AB = 5 м, то h = AV = A1V1 = AB = 5 м.

Теперь можем найти площадь основания прямой пирамиды:

S = A1B1 AV = AB AV = 5 * 5 = 25 м^2

Теперь можем найти объем пирамиды:

V = S h / 3 = 25 5 / 3 = 125 / 3 = 41.666 м^3

Ответ: объем пирамиды А1АВС равен 41.666 м^3.

18 Апр 2024 в 17:24
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир