Гипотенуза прямоугольного треугольника равна 20 см а cos одного из острых углов 0,8 . Найдите катеты

13 Фев 2020 в 19:45
140 +1
0
Ответы
1

По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов:

(c^2 = a^2 + b^2),

где c - гипотенуза, а и b - катеты.

Известно, что c = 20 см. Возведем обе части уравнения в квадрат:

(20^2 = a^2 + b^2),

(400 = a^2 + b^2).

Также известно, что cos угла равен смежнему катету деленному на гипотенузу. Так как один из углов прямоугольный, то a/c = cos угла. Пусть это будет угол А.

Тогда cos(A) = a/c = a/20 = 0,8,

a = 0,8 * 20 = 16 см.

Теперь подставим значение a в уравнение (400 = a^2 + b^2):

(400 = 16^2 + b^2),

(400 = 256 + b^2),

(b^2 = 400 - 256),

(b^2 = 144),

(b = 12).

Итак, катеты прямоугольного треугольника равны 16 см и 12 см.

18 Апр 2024 в 17:24
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир