First, we can expand the binomial using the Binomial Theorem:
(x+1)^9 = C(9,0)(x)^9 + C(9,1)(x)^8(1) + C(9,2)(x)^7(1)^2 + ... + C(9,9)(1)^9
where C(n,k) represents the binomial coefficient "n choose k".
Now, we substitute x=0.3 into the expanded form:
(0.3 + 1)^9 = C(9,0)(0.3)^9 + C(9,1)(0.3)^8(1) + C(9,2)(0.3)^7(1)^2 + ... + C(9,9)(1)^9
= C(9,0)(0.3)^9 + C(9,1)(0.3)^8 + C(9,2)(0.3)^7 + ... + C(9,9)(1)
Now, we calculate the values for each term using the binomial coefficients:
= 1(0.3)^9 + 9(0.3)^8 + 36(0.3)^7 + 84(0.3)^6 + 126(0.3)^5 + 126(0.3)^4 + 84(0.3)^3 + 36(0.3)^2 + 9*(0.3)^1 + 1
= 0.015708 + 0.226894 + 0.302136 + 0.281456 + 0.189843 + 0.092727 + 0.034992 + 0.0081 + 0.00162 + 1
= 2.35249
Therefore, (0.3+1)^9 ≈ 2.35249.
First, we can expand the binomial using the Binomial Theorem:
(x+1)^9 = C(9,0)(x)^9 + C(9,1)(x)^8(1) + C(9,2)(x)^7(1)^2 + ... + C(9,9)(1)^9
where C(n,k) represents the binomial coefficient "n choose k".
Now, we substitute x=0.3 into the expanded form:
(0.3 + 1)^9 = C(9,0)(0.3)^9 + C(9,1)(0.3)^8(1) + C(9,2)(0.3)^7(1)^2 + ... + C(9,9)(1)^9
= C(9,0)(0.3)^9 + C(9,1)(0.3)^8 + C(9,2)(0.3)^7 + ... + C(9,9)(1)
Now, we calculate the values for each term using the binomial coefficients:
= 1(0.3)^9 + 9(0.3)^8 + 36(0.3)^7 + 84(0.3)^6 + 126(0.3)^5 + 126(0.3)^4 + 84(0.3)^3 + 36(0.3)^2 + 9*(0.3)^1 + 1
= 0.015708 + 0.226894 + 0.302136 + 0.281456 + 0.189843 + 0.092727 + 0.034992 + 0.0081 + 0.00162 + 1
= 2.35249
Therefore, (0.3+1)^9 ≈ 2.35249.