1 Апр 2021 в 19:44
110 +1
0
Ответы
1

To solve these logarithmic equations, we need to rewrite the equations in exponential form first.

1) (Lg(x-0.09)+log_{0.01}(9)=0)

The equation in exponential form is:
(\lg(x-0.09) \times 0.01^{log_{0.01}(9)} = 1)

Now, let's simplify the equation:
(\lg(x-0.09) \times 0.01^{log_{0.01}(9)} = 1) becomes (\lg(x-0.09) \times 9 = 1)

Now, we can rewrite the equation in exponential form:
[10^9 = x-0.09]

Solving for x:
[x = 10^9 + 0.09]

Therefore, the value of x is approximately 1000000000.09.

2) (Log_{0.25}(6x-5)=-2)

The equation in exponential form is:
(0.25^{-2} = 6x-5)

Simplify the equation:
(4 = 6x-5)

Now, we can rewrite the equation in exponential form:
[6x = 9]

Solving for x:
[x = \frac{9}{6}]

Therefore, the value of x is 1.5.

17 Апр 2024 в 19:47
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир