To solve this system of equations, we can add the three equations together to eliminate one variable:
а + в + в + с + а + с = 1110 + 1333 + 15572(а + в + с) = 4000а + в + с = 2000
Now we can substitute this value back into the original equations to find the individual values of а, в, and с:
а + в = 1110а + с = 1557в + с = 1333
Using the equation а + в = 1110:а + 2000 - с = 1110а - с = 1110 - 2000а - с = -890
Using the equation а + с = 1557:2000 - в = 1557в = 2000 - 1557в = 443
Using the equation в + с = 1333:443 + с = 1333с = 1333 - 443с = 890
Therefore, the values of а, в, and с are:а = -890в = 443с = 890
To solve this system of equations, we can add the three equations together to eliminate one variable:
а + в + в + с + а + с = 1110 + 1333 + 1557
2(а + в + с) = 4000
а + в + с = 2000
Now we can substitute this value back into the original equations to find the individual values of а, в, and с:
а + в = 1110
а + с = 1557
в + с = 1333
Using the equation а + в = 1110:
а + 2000 - с = 1110
а - с = 1110 - 2000
а - с = -890
Using the equation а + с = 1557:
2000 - в = 1557
в = 2000 - 1557
в = 443
Using the equation в + с = 1333:
443 + с = 1333
с = 1333 - 443
с = 890
Therefore, the values of а, в, and с are:
а = -890
в = 443
с = 890