Для начала рассчитаем значение cos(15°) \cos(15°) cos(15°):
cos(15°)=cos(45°−30°)=cos(45°)cos(30°)+sin(45°)sin(30°) \cos(15°) = \cos(45° - 30°) = \cos(45°)\cos(30°) + \sin(45°)\sin(30°) cos(15°)=cos(45°−30°)=cos(45°)cos(30°)+sin(45°)sin(30°)
cos(45°)=22 \cos(45°) = \frac{\sqrt{2}}{2} cos(45°)=22
cos(30°)=32 \cos(30°) = \frac{\sqrt{3}}{2} cos(30°)=23
sin(45°)=22 \sin(45°) = \frac{\sqrt{2}}{2} sin(45°)=22
sin(30°)=12 \sin(30°) = \frac{1}{2} sin(30°)=21
Подставим значения:
cos(15°)=22⋅32+22⋅12=6+24 \cos(15°) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} cos(15°)=22 ⋅23 +22 ⋅21 =46 +2
Теперь подставим значение cos(15°) \cos(15°) cos(15°) в уравнение:
2cos2(15°)−1=2(6+24)2−1 2\cos^2(15°) - 1 = 2\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2 - 1 2cos2(15°)−1=2(46 +2 )2−1
2(6+212+216)−1 2\left(\frac{6 + 2\sqrt{12} + 2}{16}\right) - 1 2(166+212 +2 )−1
2⋅6+412+416−1 \frac{2 \cdot 6 + 4\sqrt{12} + 4}{16} - 1 162⋅6+412 +4 −1
12+412+416−1 \frac{12 + 4\sqrt{12} + 4}{16} - 1 1612+412 +4 −1
16+41216−1616 \frac{16 + 4\sqrt{12}}{16} - \frac{16}{16} 1616+412 −1616
16+412−1616 \frac{16 + 4\sqrt{12} - 16}{16} 1616+412 −16
41216 \frac{4\sqrt{12}}{16} 16412
124 \frac{\sqrt{12}}{4} 412
4⋅34 \frac{\sqrt{4} \cdot \sqrt{3}}{4} 44 ⋅3
234 \frac{2\sqrt{3}}{4} 423
32−1 \frac{\sqrt{3}}{2} - 1 23 −1
Ответ: 32−1 \frac{\sqrt{3}}{2} - 1 23 −1
Для начала рассчитаем значение cos(15°) \cos(15°) cos(15°):
cos(15°)=cos(45°−30°)=cos(45°)cos(30°)+sin(45°)sin(30°) \cos(15°) = \cos(45° - 30°) = \cos(45°)\cos(30°) + \sin(45°)\sin(30°) cos(15°)=cos(45°−30°)=cos(45°)cos(30°)+sin(45°)sin(30°)
cos(45°)=22 \cos(45°) = \frac{\sqrt{2}}{2} cos(45°)=22
cos(30°)=32 \cos(30°) = \frac{\sqrt{3}}{2} cos(30°)=23
sin(45°)=22 \sin(45°) = \frac{\sqrt{2}}{2} sin(45°)=22
sin(30°)=12 \sin(30°) = \frac{1}{2} sin(30°)=21
Подставим значения:
cos(15°)=22⋅32+22⋅12=6+24 \cos(15°) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} cos(15°)=22 ⋅23 +22 ⋅21 =46 +2
Теперь подставим значение cos(15°) \cos(15°) cos(15°) в уравнение:
2cos2(15°)−1=2(6+24)2−1 2\cos^2(15°) - 1 = 2\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2 - 1 2cos2(15°)−1=2(46 +2 )2−1
2(6+212+216)−1 2\left(\frac{6 + 2\sqrt{12} + 2}{16}\right) - 1 2(166+212 +2 )−1
2⋅6+412+416−1 \frac{2 \cdot 6 + 4\sqrt{12} + 4}{16} - 1 162⋅6+412 +4 −1
12+412+416−1 \frac{12 + 4\sqrt{12} + 4}{16} - 1 1612+412 +4 −1
16+41216−1616 \frac{16 + 4\sqrt{12}}{16} - \frac{16}{16} 1616+412 −1616
16+412−1616 \frac{16 + 4\sqrt{12} - 16}{16} 1616+412 −16
41216 \frac{4\sqrt{12}}{16} 16412
124 \frac{\sqrt{12}}{4} 412
4⋅34 \frac{\sqrt{4} \cdot \sqrt{3}}{4} 44 ⋅3
234 \frac{2\sqrt{3}}{4} 423
32−1 \frac{\sqrt{3}}{2} - 1 23 −1
Ответ: 32−1 \frac{\sqrt{3}}{2} - 1 23 −1