Дана арифметическая прогрессия a1=−478 , d=28 . Найди значение последнего отрицательного члена прогрессии.

21 Дек 2022 в 19:40
117 +1
0
Ответы
1

Для нахождения последнего отрицательного члена арифметической прогрессии воспользуемся формулой для нахождения общего члена прогрессии:

an = a1 + (n-1)d

Где an - значение n-го члена прогрессии, a1 - значение первого члена прогрессии, d - разность прогрессии, n - порядковый номер члена прогрессии.

Таким образом, чтобы найти последний отрицательный член прогрессии, нужно найти такой номер n, при котором an < 0. Подставляем данные из условия:

-478 + (n-1)*28 < 0
-478 + 28n - 28 < 0
28n - 506 < 0
28n < 506
n < 506 / 28
n < 18

Таким образом, последний отрицательный член прогрессии будет иметь порядковый номер n = 17. Подставляем найденный номер в формулу для общего члена прогрессии:

a17 = -478 + (17-1)28
a17 = -478 + 1628
a17 = -478 + 448
a17 = -30

Ответ: значение последнего отрицательного члена арифметической прогрессии равно -30.

16 Апр 2024 в 16:55
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир