Найдите площадь четырехугольника ABCD с вершинами в точках A(2;7), B(1;4) , C(2;-1) и D(-4;4) Желательно с решением, а не просто ответ. Более важно просто понять как это решается, а не сам ответ

14 Июл 2023 в 19:40
225 +1
0
Ответы
1

Для того чтобы найти площадь четырехугольника ABCD, нужно разбить его на два треугольника и найти их площади, а затем сложить их.

Площадь треугольника можно найти по формуле Герона: S = √p(p-a)(p-b)(p-c), где p - полупериметр треугольника, a, b, c - длины сторон треугольника.

Длины сторон треугольника ABC:
AB = √((1-2)^2 + (4-7)^2) = √((-1)^2 + (-3)^2) = √(1 + 9) = √10
BC = √((2-1)^2 + (-1-4)^2) = √(1 + 25) = √26
AC = √((2-2)^2 + (-1-7)^2) = √(64) = 8

Полупериметр треугольника ABC:
p = (AB + BC + AC) / 2 = (√10 + √26 + 8) / 2 ≈ (3.16 + 5.10 + 8) / 2 ≈ 16.26 / 2 ≈ 8.13

Площадь треугольника ABC:
S(ABC) = √(8.13 (8.13 - √10) (8.13 - √26) (8.13 - 8)) ≈ √(8.13 5.13 3.13 0.13) ≈ √(169.647) ≈ 13.02

Точно также находим длины сторон треугольника BCD и его площадь, после чего складываем две найденные площади.

Получаем, что площадь четырехугольника ABCD ≈ 13.02 + S(BCD).

16 Апр 2024 в 16:07
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир