For the expression to equal 12, we need to solve the equation:
×'4 + ×'3 - ×'2 - 3× - 6 = 12
However, this equation involves powers of unknowns, and it may not have an exact solution. This requires further analysis or approximation methods to find the roots of the equation.
Expanding the given expression:
(×'2 + × - 2)(×'2 + × - 3)
= ×'2 ×'2 + ×'2 × - ×'2 3 + × ×'2 + × × - × 3 - 2 ×'2 - 2 × - 2 * 3
= ×'4 + ×'3 - 3×'2 + ×'2 + ×'2 - 3× - 2×'2 - 2× - 6
= ×'4 + ×'3 - 2×'2 + ×'2 + ×'2 - 3× - 6
= ×'4 + ×'3 - ×'2 - 3× - 6
For the expression to equal 12, we need to solve the equation:
×'4 + ×'3 - ×'2 - 3× - 6 = 12
However, this equation involves powers of unknowns, and it may not have an exact solution. This requires further analysis or approximation methods to find the roots of the equation.