11 Июл 2019 в 06:56
149 +1
1
Ответы
1

To solve the equation sin(2x) * cos(45° - x) = 0, we need to find the values of x that satisfy this equation.

Now, we know that the product of two numbers is zero if at least one of the numbers is zero. Therefore, we can set each of the factors equal to zero and solve for x.

First factor: sin(2x) = 0
To find the values of x that make sin(2x) equal to zero, we need to find the x values for which sin(2x) = 0.
Since sin(2x) = 0, this means that 2x = kπ, where k is an integer.
So, 2x = kπ
x = kπ / 2
Where k is an integer.

Second factor: cos(45° - x) = 0
To find the values of x that make cos(45° - x) equal to zero, we need to find the x values for which cos(45° - x) = 0.
Since cos(45° - x) = 0, this means that 45° - x = mπ/2, where m is an integer.
So, 45° - x = mπ/2
x = 45° - mπ/2
Where m is an integer.

Therefore, the solutions to the equation sin(2x) * cos(45° - x) = 0 are x = kπ / 2 and x = 45° - mπ/2, where k and m are integers.

20 Апр 2024 в 23:25
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир