11 Сен 2019 в 18:41
129 +1
0
Ответы
1

To solve this inequality, we need to first square both sides of the inequality to get rid of the square root:

(x-3)^2(x^2 + 4) ≤ (x^2 + 9)^2

Expanding both sides gives:

(x^2 - 6x + 9)(x^2 + 4) ≤ x^4 + 18x^2 + 81

Now, simplify:

x^4 + 4x^2 - 6x^3 - 24x + 9x^2 - 36 + 4x^2 ≤ x^4 + 18x^2 + 81

Combine like terms:

4x^2 - 6x^3 - 24x + 9x^2 - 36 + 4x^2 ≤ x^4 + 18x^2 + 81

13x^2 - 6x^3 - 24x - 36 ≤ x^4 + 18x^2 + 81

Rearranging to standard form:

x^4 - 6x^3 - 5x^2 - 24x - 117 ≥ 0

Now, we need to find the roots of the equation by setting it equal to zero:

x^4 - 6x^3 - 5x^2 - 24x - 117 = 0

This inequality is a bit difficult to solve without the use of a computer or calculator due to the quartic equation involved. However, the roots can be found using methods like numerical analysis or computer software.

20 Апр 2024 в 01:40
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир