To simplify the given expression, we need to first convert all the trigonometric functions to their corresponding functions involving sine and cosine.
Convert ctg(140°) to cos(140°)/sin(140°)
Then we have:Tg(150°) Sin(200°) / Cos(320°) (Cos(140°) / Sin(140°))
Now we can simplify by cancelling out the like terms:
= tan(150°) sin(200°) / cos(320°) (cos(140°) / sin(140°))= tan(150°) sin(200°) cos(140°) / cos(320°) * sin(140°)
Now we can simplify further by using trigonometric identities:
= (tan(150°) = - cot(30°) = -tan(120°))
= -tan(120°) sin(200°) cos(140°) / cos(320°) * sin(140°)
Since tan(120°) = -√3= -√3 sin(200°) cos(140°) / cos(320°) * sin(140°)
Therefore, the simplified expression is -√3 sin(200°) cos(140°) / cos(320°) * sin(140°)
To simplify the given expression, we need to first convert all the trigonometric functions to their corresponding functions involving sine and cosine.
Convert ctg(140°) to cos(140°)/sin(140°)
Then we have:
Tg(150°) Sin(200°) / Cos(320°) (Cos(140°) / Sin(140°))
Now we can simplify by cancelling out the like terms:
= tan(150°) sin(200°) / cos(320°) (cos(140°) / sin(140°))
= tan(150°) sin(200°) cos(140°) / cos(320°) * sin(140°)
Now we can simplify further by using trigonometric identities:
= (tan(150°) = - cot(30°) = -tan(120°))
= -tan(120°) sin(200°) cos(140°) / cos(320°) * sin(140°)
= -tan(120°) sin(200°) cos(140°) / cos(320°) * sin(140°)
Since tan(120°) = -√3
= -√3 sin(200°) cos(140°) / cos(320°) * sin(140°)
Therefore, the simplified expression is -√3 sin(200°) cos(140°) / cos(320°) * sin(140°)