Упростите выражение (а+2б)^2 -(а-б)(а+б) и найдите его значение при
а=1
б=1/5

22 Сен 2019 в 07:42
197 +1
1
Ответы
1

Для упрощения начнем с разложения квадрата бинома (а+2б)^2:

(а+2б)^2 = а^2 + 4аб + 4б^2

Затем упростим разность (а-б)(а+б):

(а-б)(а+б) = а^2 - б^2

Теперь подставим значения переменных а=1 и б=1/5:

(1+2(1/5))^2 - ((1-(1/5))(1+(1/5)))
(1+2/5)^2 - ((1-1/5)(1+1/5))
(7/5)^2 - ((4/5)(6/5))
(49/25) - (24/25)
25/25
1

Поэтому, значение выражения (а+2б)^2 - (а-б)(а+б) при а=1 и б=1/5 равно 1.

19 Апр 2024 в 20:22
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир