Для начала найдем угол A в треугольнике ABC:Угол A = (180 - угол B) / 2Угол A = (180 - 108) / 2Угол A = 36 градусов
Теперь найдем длину стороны AC по теореме косинусов:AC^2 = AB^2 + BC^2 - 2 AB BC cos(угол B)AC^2 = 12^2 + 12^2 - 2 12 12 cos(108)AC^2 = 144 + 144 - 288 * (-0.309)AC^2 = 288 + 88.992AC^2 = 376.992AC = √376.992AC ≈ 19.41
Теперь найдем длину биссектрисы AM, используя формулу:AM = 2 BF AC / (BF + AC)AM = 2 12 19.41 / (12 + 19.41)AM = 464.16 / 31.41AM ≈ 14.73
Итак, биссектриса AM ≈ 14.73.
Для начала найдем угол A в треугольнике ABC:
Угол A = (180 - угол B) / 2
Угол A = (180 - 108) / 2
Угол A = 36 градусов
Теперь найдем длину стороны AC по теореме косинусов:
AC^2 = AB^2 + BC^2 - 2 AB BC cos(угол B)
AC^2 = 12^2 + 12^2 - 2 12 12 cos(108)
AC^2 = 144 + 144 - 288 * (-0.309)
AC^2 = 288 + 88.992
AC^2 = 376.992
AC = √376.992
AC ≈ 19.41
Теперь найдем длину биссектрисы AM, используя формулу:
AM = 2 BF AC / (BF + AC)
AM = 2 12 19.41 / (12 + 19.41)
AM = 464.16 / 31.41
AM ≈ 14.73
Итак, биссектриса AM ≈ 14.73.