To simplify this expression, we will first distribute the coefficients:
-6(2/3a - 1/6) + 4(3/4a - 1/12)
Next, simplify the terms within the parentheses:
-6(2/3a - 1/6) = -6(2/3a) + 6*(1/6) = -4a + 1
4(3/4a - 1/12) = 4(3/4a) - 4*(1/12) = 3a - 1/3
Now we have:
-4a + 1 + 3a - 1/3
Combine like terms:
-4a + 3a + 1 - 1/3
Simplify:
-a + 1 - 1/3
Combine the constant terms:
-a + 2/3
Therefore, -6(2/3a - 1/6) + 4(3/4a - 1/12) simplifies to -a + 2/3.
To simplify this expression, we will first distribute the coefficients:
-6(2/3a - 1/6) + 4(3/4a - 1/12)
Next, simplify the terms within the parentheses:
-6(2/3a - 1/6) = -6(2/3a) + 6*(1/6) = -4a + 1
4(3/4a - 1/12) = 4(3/4a) - 4*(1/12) = 3a - 1/3
Now we have:
-4a + 1 + 3a - 1/3
Combine like terms:
-4a + 3a + 1 - 1/3
Simplify:
-a + 1 - 1/3
Combine the constant terms:
-a + 2/3
Therefore, -6(2/3a - 1/6) + 4(3/4a - 1/12) simplifies to -a + 2/3.