23 Окт 2019 в 19:55
152 +1
0
Ответы
1

To solve this differential equation, we first need to check if it is exact. To do this, we compute the partial derivatives of the terms involving x and y:

∂/∂y (х^2 + y) = 1
∂/∂x (x - 2y) = 1

Since these partial derivatives are equal, the differential equation is exact.

Next, we find the potential function F(x, y) such that:

∂F/∂x = х^2 + y
∂F/∂y = x - 2y

Integrating the first equation with respect to x gives:

F = (1/3) * x^3 + xy + g(y)

Differentiating this result with respect to y and comparing with the second equation gives:

∂F/∂y = x + g'(y) = x - 2y

Therefore, g'(y) = -2y, which means g(y) = -y^2.

So the potential function F(x, y) is:

F = (1/3) * x^3 + xy - y^2

Therefore, the general solution of the differential equation is:

(1/3) * x^3 + xy - y^2 = C

where C is the constant of integration.

19 Апр 2024 в 09:49
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир