To simplify the expression sinx+sin3xsinx + sin3xsinx+sin3x / cosx+cos3xcosx + cos3xcosx+cos3x, we can use the sum-to-product identities for sine and cosine functions.
First, rewrite the expression as:
sinx/cosx + sin3x/cos3x
Now, apply the sum-to-product identity sinAAA / cosBBB = tanA−BA-BA−B:
tanxxx + tan3x3x3x
Now, we can simplify tan3x3x3x using the triple angle formula for tangent:
To simplify the expression sinx+sin3xsinx + sin3xsinx+sin3x / cosx+cos3xcosx + cos3xcosx+cos3x, we can use the sum-to-product identities for sine and cosine functions.
First, rewrite the expression as:
sinx/cosx + sin3x/cos3x
Now, apply the sum-to-product identity sinAAA / cosBBB = tanA−BA-BA−B:
tanxxx + tan3x3x3x
Now, we can simplify tan3x3x3x using the triple angle formula for tangent:
tan3x3x3x = 3tan(x)−tan3(x)3tan(x) - tan^3(x)3tan(x)−tan3(x) / 1−3tan2(x)1 - 3tan^2(x)1−3tan2(x)
Therefore, the final simplified expression is:
tanxxx + 3tan(x)−tan3(x)3tan(x) - tan^3(x)3tan(x)−tan3(x) / 1−3tan2(x)1 - 3tan^2(x)1−3tan2(x)