Найдите значение производной функции: а) y=1-2x-3x^2, x0=1; б) y=tgx+2sinx, x0=π/4 в) y=sinx(2/x-1) г)y=x^3+1/ cosx

19 Дек 2019 в 19:41
109 +1
0
Ответы
1

а) y'= -2 - 6x
Подставляем x0=1:
y'(1) = -2 - 6*1 = -8

б) y' = sec^2x + 2cosx
Подставляем x0=π/4:
y'(π/4) = sec^2(π/4) + 2cos(π/4) = 2 + 2*sqrt(2)/2 = 2 + sqrt(2)

в) y' = sinx(2/x - 1)' + sinx'(2/x - 1) = sinx(-2/x^2) + sinx2x^(-2) = -2cosx/x + 2cosx/x = 0

г) y' = 3x^2 - 1/(sinx sin^2(x)) = 3x^2 - cosecx
Подставляем x0=1:
y'(1) = 31^2 - cosec(1) = 3 - 1/sin(1)

18 Апр 2024 в 23:19
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир