To solve this expression, we can use the sine and cosine addition formula:
sin(a) + sin(b) = 2sin((a + b)/2)cos((a - b)/2)
Therefore, the expression becomes:
2sin((50+10)/2)cos((50-10)/2)/cos(20)
= 2sin(60/2)cos(40/2)/cos(20)
= 2sin(30)cos(20)/cos(20)
= 2(√3/2)(√3/2)
= 3/2
Therefore, sin50 + sin10 / cos20 = 3/2.
To solve this expression, we can use the sine and cosine addition formula:
sin(a) + sin(b) = 2sin((a + b)/2)cos((a - b)/2)
Therefore, the expression becomes:
2sin((50+10)/2)cos((50-10)/2)/cos(20)
= 2sin(60/2)cos(40/2)/cos(20)
= 2sin(30)cos(20)/cos(20)
= 2(√3/2)(√3/2)
= 3/2
Therefore, sin50 + sin10 / cos20 = 3/2.