В подставке массой M имеется цилиндрическая выемка радиусом R. Небольшую щайбу массой m кладут на край выемки и отпускают. Найти скорость подставки в тот момент, когда шайба будет в самом нижнем положении. Трения нет.

24 Фев 2020 в 19:42
149 +1
0
Ответы
1

Пусть скорость подставки в момент отпускания щайбы равна V0, тогда энергия системы в этот момент равна потенциальной энергии щайбы в самом верхнем положении (0 по высоте):

E = mgh = mgR,

где g - ускорение свободного падения, h - высота, на которую поднялась щайба.

После того, как щайба отпущена, она начнёт движение вниз, а подставка в противоположную сторону. Пусть скорость подставки в момент, когда щайба достигает самого нижнего положения, равна V. Тогда энергия системы в этот момент будет равна кинетической энергии щайбы плюс кинетической энергии подставки:

E = 0 + 1/2mV^2 + 1/2MV^2.

С учётом закона сохранения энергии, получаем:

mgR = 1/2mV^2 + 1/2MV^2.

Делим обе части равенства на m+M и получаем:

gR = 1/2V^2.

Отсюда находим скорость V:

V = sqrt(2gR).

Таким образом, скорость подставки в момент, когда щайба будет в самом нижнем положении, равна V = sqrt(2gR).

18 Апр 2024 в 16:48
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир