Даны точки M(1; -2), N(-2; 3) и К(3; 1). Периметр трех углы MNK.

9 Апр 2020 в 19:42
152 +1
1
Ответы
1

Для нахождения периметра треугольника MNK нужно вычислить длины сторон их координат точек.

Длины сторон вычисляются по формуле:
AB = √((x2 - x1)^2 + (y2 - y1)^2)

Для стороны MN:
MN = √((-2 - 1)^2 + (3 - (-2))^2) = √(3^2 + 5^2) = √(9 + 25) = √34

Для стороны NK:
NK = √((1 - (-2))^2 + (3 - 1)^2) = √(3^2 + 2^2) = √(9 + 4) = √13

Для стороны MK:
MK = √((3 - 1)^2 + (1 - (-2))^2) = √(2^2 + 3^2) = √(4 + 9) = √13

Теперь можем найти периметр треугольника MNK:
Периметр = MN + NK + MK = √34 + √13 + √13 ≈ 5.84 + 3.61 + 3.61 ≈ 12.06

Ответ: Периметр треугольника MNK ≈ 12.06.

18 Апр 2024 в 14:19
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир