На осе x найти C ровноотдаленную от точок A(1;2;3) и B(-2;1;3)?

23 Мая 2020 в 19:48
175 +1
0
Ответы
1

Для нахождения точки C, равноудаленной от точек A и B, сначала найдем середину отрезка AB.

Середина отрезка AB находится по формуле:
x = (x1 + x2) / 2
y = (y1 + y2) / 2
z = (z1 + z2) / 2

Где x1, y1, z1 - координаты точки A, а x2, y2, z2 - координаты точки B.

Для точек A(1;2;3) и B(-2;1;3) середина отрезка AB будет:
x = (1 + (-2)) / 2 = -1/2
y = (2 + 1) / 2 = 3/2
z = (3 + 3) / 2 = 3

Теперь найдем точку C, которая равноудалена от середины отрезка AB и точки A.

По формуле для средней точки:
x = (x1 + x2) / 2
y = (y1 + y2) / 2
z = (z1 + z2) / 2

Где x1, y1, z1 - координаты середины отрезка AB (-1/2; 3/2; 3), а x2, y2, z2 - координаты точки A(1;2;3).

Для точек (-1/2; 3/2; 3) и (1;2;3) точка C будет:
x = (1 - 1/2) / 2 = 1/4
y = (2 - 3/2) / 2 = 1/4
z = (3 - 3) / 2 = 0

Таким образом, точка C с координатами (1/4; 1/4; 0) ровноудалена от точек A(1;2;3) и B(-2;1;3) на оси x.

18 Апр 2024 в 11:44
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир