Для нахождения значения стороны ac воспользуемся основными тригонометрическими соотношениями и данными из условия:
tg(a) = a/b, где a - противолежащая катету a сторона, b - прилежащая катету b сторона.
Так как угол a равен 20 градусам, то tg(20) = ac/b.
Из данного уравнения мы можем найти выражение для стороны ac:
ac = b * tg(20).
Теперь воспользуемся теоремой Пифагора для нахождения стороны b:
a^2 + b^2 = c^2,ac = sqrt(a^2 + b^2).
Так как у нас дан прямоугольный треугольник, сторона c равна гипотенузе, следовательно, c = ac / tg(c) = ac / 0.5.
Теперь можем составить уравнение для стороны b:
a^2 + b^2 = (ac / 0.5)^2,b = sqrt((ac / 0.5)^2 - a^2) = sqrt((ac / 0.5)^2 - a^2).
Далее, подставим найденное значение b в уравнение ac = b * tg(20) для нахождения стороны ac.
ac = b tg(20),ac = sqrt((ac / 0.5)^2 - a^2) tg(20).
Решив это уравнение и найдя сторону ac, получим ответ.
Для нахождения значения стороны ac воспользуемся основными тригонометрическими соотношениями и данными из условия:
tg(a) = a/b, где a - противолежащая катету a сторона, b - прилежащая катету b сторона.
Так как угол a равен 20 градусам, то tg(20) = ac/b.
Из данного уравнения мы можем найти выражение для стороны ac:
ac = b * tg(20).
Теперь воспользуемся теоремой Пифагора для нахождения стороны b:
a^2 + b^2 = c^2,
ac = sqrt(a^2 + b^2).
Так как у нас дан прямоугольный треугольник, сторона c равна гипотенузе, следовательно, c = ac / tg(c) = ac / 0.5.
Теперь можем составить уравнение для стороны b:
a^2 + b^2 = (ac / 0.5)^2,
b = sqrt((ac / 0.5)^2 - a^2) = sqrt((ac / 0.5)^2 - a^2).
Далее, подставим найденное значение b в уравнение ac = b * tg(20) для нахождения стороны ac.
ac = b tg(20),
ac = sqrt((ac / 0.5)^2 - a^2) tg(20).
Решив это уравнение и найдя сторону ac, получим ответ.