Для начала заметим, что угол АВМ равен углу КВМ (так как треугольники АВМ и КВМ равнобедренные и у них основания параллельны, следовательно, углы при основаниях равны).
Также, угол КВМ равен углу СВК, так как они стороны внешнего угла треугольника ВКС.
Из этих двух фактов следует, что угол АВМ равен углу СВК.
Теперь, у нас у равнобедренных треугольников АВМ и СВК равны два угла (это только что доказанный угол и равные углы при вершинах А и С), следовательно, согласно третьему признаку равенства треугольников, треугольники АВМ и СВК равны.
Для начала заметим, что угол АВМ равен углу КВМ (так как треугольники АВМ и КВМ равнобедренные и у них основания параллельны, следовательно, углы при основаниях равны).
Также, угол КВМ равен углу СВК, так как они стороны внешнего угла треугольника ВКС.
Из этих двух фактов следует, что угол АВМ равен углу СВК.
Теперь, у нас у равнобедренных треугольников АВМ и СВК равны два угла (это только что доказанный угол и равные углы при вершинах А и С), следовательно, согласно третьему признаку равенства треугольников, треугольники АВМ и СВК равны.