Для нахождения объема правильной треугольной пирамиды воспользуемся формулой:
V = (S основания * h) / 3,
где S основания - площадь основания пирамиды, h - высота пирамиды.
Так как у нас треугольная пирамида, площадь основания равна S = a^2 / 4, где a - длина стороны треугольника. Также у нас дано, что длина бокового ребра равна 3, значит длина стороны треугольника равна 2 * 3 = 6.
Теперь найдем высоту пирамиды. Для этого вспомним, что у треугольной пирамиды боковая грань является прямоугольным треугольником, в котором один катет равен половине основания треугольника, а гипотенуза равна длине бокового ребра. Таким образом, высота пирамиды равна h = 6 / 2 = 3.
Подставим полученные значения в формулу объема пирамиды:
Для нахождения объема правильной треугольной пирамиды воспользуемся формулой:
V = (S основания * h) / 3,
где S основания - площадь основания пирамиды, h - высота пирамиды.
Так как у нас треугольная пирамида, площадь основания равна S = a^2 / 4, где a - длина стороны треугольника. Также у нас дано, что длина бокового ребра равна 3, значит длина стороны треугольника равна 2 * 3 = 6.
Теперь найдем высоту пирамиды. Для этого вспомним, что у треугольной пирамиды боковая грань является прямоугольным треугольником, в котором один катет равен половине основания треугольника, а гипотенуза равна длине бокового ребра. Таким образом, высота пирамиды равна h = 6 / 2 = 3.
Подставим полученные значения в формулу объема пирамиды:
V = (6^2 / 4 3) / 3 = (36 / 4 3) / 3 = 9.
Ответ: объем пирамиды равен 9.