В треугольнике abc точка M лежит на стороне AB , точка N - на стороне AC . через точки M , N , B , C проходит окружность радиуса √3 в треугольнике abc точка M лежит на тороне AB , точка N - на стороне AC . через точки M , N , B , C проходит окружность радиуса . найдите длину отрезка AM, если BC = 3 , AM:MB, угол BAC=30

18 Фев 2020 в 19:45
117 +1
0
Ответы
1

Обозначим точку пересечения окружности с точкой M за D.

Так как точка D находится на окружности радиуса √3 и треугольник MBD равнобедренный (так как MD = DB), то угол MDB равен 60 градусов.

Из условия задачи у нас имеется прямоугольный треугольник с уголом BAC = 30 градусов.

Так как угол MDB = 60 градусов, то угол AMB = 90 - 60 = 30 градусов.

Таким образом, треугольник AMB равнобедренный и AM = MB.

Тогда можно выразить длину отрезка AM:

AM + MB + AB = BC + AC = 3 + 3 = 6

Из этого уравнения и того факта, что AM = MB, мы найдем AM = MB = 2.

Итак, длина отрезка AM равна 2.

18 Апр 2024 в 17:05
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир