Пусть дан параллелограмм АВСД, в котором стороны АВ = СД = 15 см; ВС = АД = 12 см. Высота ВН = 6 см; Найти высоту ВК, опущенную на сторону СД.
Так как площадь S(АВСД) = АД * ВН = 12 см * 6 см= 72 см^2. С друной стороны S (АВСД) = СД * ВК = 15 * ВК = 72 см^2. Откуда ВК = 72/15 см = 4,8 см.
Если высота 6 см опущена на другуюсторону, то вторая высота равна 15 * 6/12 = 7,5 см.
Пусть дан параллелограмм АВСД, в котором стороны АВ = СД = 15 см; ВС = АД = 12 см. Высота ВН = 6 см; Найти высоту ВК, опущенную на сторону СД.
Так как площадь S(АВСД) = АД * ВН = 12 см * 6 см= 72 см^2. С друной стороны S (АВСД) = СД * ВК = 15 * ВК = 72 см^2. Откуда ВК = 72/15 см = 4,8 см.
Если высота 6 см опущена на другуюсторону, то вторая высота равна 15 * 6/12 = 7,5 см.