7 Июл 2021 в 19:44
70 +1
0
Ответы
1

To solve this logarithmic equation, we can first convert both sides to exponential form:

5^(Log5(5x-1)) = 5^(Log5(1-x) + 1)

On the left side, the base 5 and the logarithm log5 cancel out, leaving us with just 5x-1:

5x - 1 = 5^(Log5(1-x)) * 5

Now, we need to solve for x. Let's simplify the right side by recognizing that log5(1-x) + 1 is equivalent to log5(1-x) + log5(5), which simplifies to log5(5(1-x)):

5x - 1 = 5^(Log5(5(1-x)))

Now, notice that 5^(Log5(5(1-x))) is equal to 5(1-x) because the base 5 and the logarithm log5 cancel out:

5x - 1 = 5(1-x)

Simplify both sides:

5x - 1 = 5 - 5x

Now, solve for x:

5x + 5x = 5 + 1
10x = 6
x = 6/10
x = 3/5

Therefore, the solution to the equation log5(5x-1) = log5(1-x) + 1 is x = 3/5.

17 Апр 2024 в 14:57
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир