30 Авг 2019 в 19:42
180 +1
0
Ответы
1

To solve the equation cos^2(x) + sin(x) = √2sin(x+π/4), we can start by using the Pythagorean identity sin^2(x) + cos^2(x) = 1.

Rewrite the given equation in terms of sin and cos using the Pythagorean identity:

cos^2(x) + sin(x) = √2sin(x+π/4)
1 - sin^2(x) + sin(x) = √2sin(x+π/4)

Now, we can rearrange terms and simplify:

sin(x) - sin^2(x) = √2sin(x+π/4)
sin(x)(1 - sin(x)) = √2sin(x+π/4)

Now, let's use the sum to product identity for the right side:

sin(x)(1 - sin(x)) = √2(sin(x)cos(π/4) + cos(x)sin(π/4))
sin(x)(1 - sin(x)) = √2(sin(x)(1/√2) + cos(x)(1/√2))
sin(x)(1 - sin(x)) = sin(x) + cos(x)

Since sin(x) is a common factor, we can divide by sin(x):

1 - sin(x) = 1 + cos(x)

Now, solving for cos(x) in terms of sin(x):

cos(x) = -sin(x)

Hence, cos(x) = -sin(x) is the solution to the given equation cos^2(x) + sin(x) = √2sin(x+π/4).

20 Апр 2024 в 05:41
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир