С РИСУНКОМ
Через точку A окружности проведены диаметр AC и две хорды AB и AD, равные радиусу этой окружности.Найдите углы четырёхугольника ABCD и градусные меры дуг AB,BC.CD,AD.

11 Окт 2019 в 07:42
315 +1
0
Ответы
1

Так как AB и AD равны радиусу окружности, то треугольники ABC и ADC являются равнобедренными.

Следовательно, углы ABC и ADC будут равны между собой. Обозначим их за x.

Так как углы в четырехугольнике суммируются до 360 градусов, то углы BCD и BAD также будут равны между собой и равны углам ABC и ADC.

Имеем уравнение:
x + x + 2x + 2x = 360
6x = 360
x = 60

Теперь мы знаем, что углы ABC, ADC, BCD и BAD равны 60 градусов каждый.

Градусные меры дуг AB, BC, CD, AD равны половине соответствующих центральных углов:

Дуга AB = 60 / 2 = 30 градусов
Дуга BC = 60 / 2 = 30 градусов
Дуга CD = 60 / 2 = 30 градусов
Дуга AD = 60 / 2 = 30 градусов

Итак, углы четырёхугольника ABCD равны 60 градусов каждый, а градусные меры дуг равны 30 градусов.

19 Апр 2024 в 12:14
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир