Из точки A к окружности проведена секущая AB, внешняя и внутреняя части которые соответственно равны 4 и 12 см. Найдите длину отрезка касательной проведенной из точки A к этой окружности

12 Окт 2019 в 14:42
162 +1
0
Ответы
1

Для решения этой задачи воспользуемся теоремой о касательной к окружности. Касательная, проведенная к окружности из точки A, равна по длине биссектрисе угла между секущей и радиусом, проведенным из точки касания касательной и окружности.

Пусть отрезок касательной, проведенной из точки A к окружности, равен x. Тогда получим следующее уравнение:

x^2 = 4 * 12 = 48

Отсюда x = √48 = 4√3 см.

Итак, длина отрезка касательной, проведенной из точки A к окружности, равна 4√3 см.

19 Апр 2024 в 11:50
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Гарантированные бесплатные доработки в течение 1 года
Быстрое выполнение от 2 часов
Проверка работы на плагиат
Поможем написать учебную работу
Прямой эфир